POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Mathematical aid of decision [N2IBez1>MWD]

		dr Piotr Rejmenciak piotr.rejmenciak@put.poznan.pl	
Coordinators		Lecturers	
Number of credit points 4,00			
Tutorials 16	Projects/seminars 0	6	
Number of hours Lecture 10	Laboratory classe 0	es	Other (e.g. online) 0
Form of study part-time		Requirements compulsory	
Level of study second-cycle		Course offered in polish	1
Area of study (specialization) Ergonomics and Work Safety		Profile of study general academi	c
Course Field of study Safety Engineering		Year/Semester 1/1	

Prerequisites

Students can determine the extremes of functions of one variable, compute the partial derivatives, operate on matrices.

Course objective

To familiarize students with the scope and purpose of building mathematical models, creating and using simple mathematical decision models.

Course-related learning outcomes

Knowledge:

-the student knows the issues related to Mathematical Decision Making: linear programming, nonlinear programming, networks, transport issues, fuzzy sets, game theory, -the student knows the issues of the possibility of using Mathematical Decision Making in the field of occupational safety and ergonomics, [P7S_WG_01, P7S_WG_02].

Skills:

- based on the received data , the student can choose the proper method in order to make the right decision,

- using data , the student can plan and conduct experiments, interpret obtained results and draw conclusions,

- the student can make decisions based on mathematical methods,

- the student can formulate and justify the opinion on the selected decision.

[P7S_UW_01, P7S_UW_02, P7S_UW_03]

Social competences:

-th estudent is aware of the need to recognize the cause-and-effect relationships that are relevant during the implementation of the set goals and rank the importance of alternative or competitive tasks. [P7S_KK_01]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

- lectures: written final test on the last lecture, the student receives credit after obtaining at least 51% of points possible to obtain

- classes: 2 tests, the student receives credit after obtaining at least 51% of points possible to obtain

Programme content

Update 13.09.2021

Mathematic programming; network algorithms: determination of the shortest path in the graph, determination of the maximum flow in the transport; networks; transport problems; games; making decisions with many goals and in conditions of uncertainty; fuzzy set theory.

Teaching methods

- lectures: multimedia presentation supplemented by examples given on the board.

- classes: solving sample tasks on the board.

Bibliography

Basic:

1. Jędrzejczyk Z., Kukuła K., Skrzypek J., Walkosz A. (2014), Badania operacyjne w przykładach i zadaniach, Wydawnictwo Naukowe PWN, Warszawa.

2. Lindgren B.W. (1977), Elementy teorii decyzji, WNT, Warszawa.

3. Łachwa A. (2001), Rozmyty świat zbiorów, liczb, relacji, faktów, reguł i decyzji, Wydawnictwo EXIT, Warszawa.

4. Zangwill W.I. (1974), Programowanie nieliniowe, WNT, Warszawa. 2001r.

Additional:

1. Simmonard L. Programowanie Liniowe, PWN, Warszawa 1969.

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,00
Classes requiring direct contact with the teacher	30	1,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	70	2,50